Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.21.22274150

ABSTRACT

ABSTRACT Background Few studies have assessed the benefits of COVID-19 vaccines in settings where most of the population had been exposed to SARS-CoV-2 infection. Methods We conducted a cost-effectiveness analysis of COVID-19 vaccine in Kenya from a societal perspective over a 1.5-year time frame. An age-structured transmission model assumed at least 80% of the population to have prior natural immunity when an immune escape variant was introduced. We examine the effect of slow (18 months) or rapid (6 months) vaccine roll-out with vaccine coverage of 30%, 50% or 70% of the adult (> 18 years) population prioritizing roll-out in over 50-year olds (80% uptake in all scenarios). Cost data were obtained from primary analyses. We assumed vaccine procurement at $7 per dose and vaccine delivery costs of $3.90-$6.11 per dose. The cost-effectiveness threshold was USD 919. Findings Slow roll-out at 30% coverage largely targets over 50-year-olds and resulted in 54% fewer deaths (8,132(7,914 to 8,373)) than no vaccination and was cost-saving (ICER=US$-1,343 (-1,345 to - 1,341) per DALY averted). Increasing coverage to 50% and 70%, further reduced deaths by 12% (810 (757 to 872) and 5% (282 (251 to 317) but was not cost-effective, using Kenya’s cost-effectiveness threshold ($ 919.11). Rapid roll-out with 30% coverage averted 63% more deaths and was more cost-saving (ICER=$-1,607 (-1,609 to -1,604) per DALY averted) compared to slow roll-out at the same coverage level, but 50% and 70% coverage scenarios were not cost-effective. Interpretation With prior exposure partially protecting much of the Kenyan population, vaccination of young adults may no longer be cost-effective. KEY QUESTIONS What is already known? The COVID-19 pandemic has led to a substantial number of cases and deaths in low-and middle-income countries. COVID-19 vaccines are considered the main strategy of curtailing the pandemic. However, many African nations are still at the early phase of vaccination. Evidence on the cost-effectiveness of COVID-19 vaccines are useful in estimating value for money and illustrate opportunity costs. However, there is a need to balance these economic outcomes against the potential impact of vaccination. What are the new findings? In Kenya, a targeted vaccination strategy that prioritizes those of an older age and is deployed at a rapid rollout speed achieves greater marginal health impacts and is better value for money. Given the existing high-level population protection to COVID-19 due to prior exposure, vaccination of younger adults is less cost-effective in Kenya. What do the new findings imply? Rapid deployment of vaccines during a pandemic averts more cases, hospitalisations, and deaths and is more cost-effective. Against a context of constrained fiscal space for health, it is likely more prudent for Kenya to target those at severe risk of disease and possibly other vulnerable populations rather than to the whole population.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.17.21259100

ABSTRACT

Policy decisions on COVID-19 interventions should be informed by a local, regional and national understanding of SARS-CoV-2 transmission. Epidemic waves may result when restrictions are lifted or poorly adhered to, variants with new phenotypic properties successfully invade, or when infection spreads to susceptible sub-populations. Three COVID-19 epidemic waves have been observed in Kenya. Using a mechanistic mathematical model we explain the first two distinct waves by differences in contact rates in high and low social-economic groups, and the third wave by the introduction of a new higher-transmissibility variant. Reopening schools led to a minor increase in transmission between the second and third waves. Our predictions of current population exposure in Kenya (∼75% June 1st) have implications for a fourth wave and future control strategies. One Sentence Summary COVID-19 spread in Kenya is explained by mixing heterogeneity and a variant less constrained by high population exposure


Subject(s)
COVID-19 , Encephalitis, Arbovirus
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.12.21251294

ABSTRACT

In October 2020, anti-SARS-CoV-2 IgG seroprevalence among truck drivers and their assistants (TDA) in Kenya was 42.3%, higher than among other key populations. TDA transport essential supplies during the COVID-19 pandemic, placing them at increased risk of being infected and of transmitting SARS-CoV-2 infection over a wide geographical area.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL